Skip to content

Isolate Transport

The Isolate Transport enables high-performance communication between Dart isolates with zero-copy object passing capabilities. It's designed for CPU-intensive applications that need parallel processing while maintaining the performance benefits of direct object sharing.

Overview

  • Zero-Copy Object Passing – Direct object passing between isolates without serialization overhead, maintaining performance for large data structures.

  • Worker Process Support – Spawn dedicated worker isolates for CPU-intensive tasks while keeping the main isolate responsive.

  • Parallel Processing – Distribute workload across multiple isolates to take advantage of multi-core systems efficiently.

  • Type Safety – Full Dart type information is preserved across isolate boundaries, maintaining compile-time safety.

Key Features

Zero-Copy Performance

Unlike traditional isolate communication that requires message passing, Isolate transport can pass objects directly:

class LargeDataProcessor {
  // Process massive datasets without copying
  Future<ProcessedData> processLargeDataset(LargeDataset dataset) async {
// The entire dataset is passed by reference to the worker isolate
// No serialization, no copying - just direct object access
return ProcessedData(
  results: dataset.records.map((record) => processRecord(record)).toList(),
  metadata: {
    'processed_at': DateTime.now(),
    'record_count': dataset.records.length,
    'processing_time_ms': processingTime.inMilliseconds,
  },
);
  }
}

Worker Isolate Management

Automatically manage worker isolates for parallel processing:

// Create a pool of worker isolates
final transport = RpcIsolateTransport.workerPool(
  workerCount: Platform.numberOfProcessors,
  workerScript: 'worker_isolate.dart',
  options: IsolateTransportOptions(
enableZeroCopy: true,
maxMemoryUsage: 512 * 1024 * 1024, // 512MB per worker
idleTimeout: Duration(minutes: 5),
  ),
);

final caller = RpcCallerEndpoint(transport: transport);
final processor = DataProcessorCaller(caller);

// Work is automatically distributed across available workers
final futures = List.generate(100, (i) async {
  return await processor.processChunk(DataChunk(id: i, data: generateData(i)));
});

final results = await Future.wait(futures);
// All 100 chunks processed in parallel across worker isolates

Setup and Configuration

Worker Isolate Script

Create a dedicated worker script for CPU-intensive operations:

worker_isolate.dart

// worker_isolate.dart

void main(List<String> args, SendPort sendPort) async {
  // Create isolate transport for worker
  final transport = RpcIsolateWorkerTransport(sendPort);

  // Create responder endpoint
  final responder = RpcResponderEndpoint(transport: transport);

  // Register worker services
  responder.registerServiceContract(DataProcessorResponder());
  responder.registerServiceContract(ImageProcessorResponder());
  responder.registerServiceContract(ComputationResponder());

  // Start the worker
  await responder.start();

  print('Worker isolate started with PID: ${Isolate.current.debugName}');
}

// CPU-intensive data processing service
class DataProcessorResponder extends RpcResponderContract {
  DataProcessorResponder() : super('DataProcessor');

  @override
  void setup() {
    addUnaryMethod<ProcessDataRequest, ProcessDataResponse>(
      methodName: 'processData',
      handler: _processData,
    );

    addUnaryMethod<ComputeRequest, ComputeResponse>(
      methodName: 'compute',
      handler: _compute,
    );

    addServerStreamMethod<BatchRequest, BatchResult>(
      methodName: 'processBatch',
      handler: _processBatch,
    );
  }

  Future<ProcessDataResponse> _processData(ProcessDataRequest request, {RpcContext? context}) async {
    // CPU-intensive processing without blocking main isolate
    final results = <ProcessedItem>[];

    for (final item in request.items) {
      // Simulate heavy computation
      final processed = await _performHeavyComputation(item);
      results.add(processed);
    }

    return ProcessDataResponse(
      results: results,
      processingTimeMs: DateTime.now().difference(request.startTime).inMilliseconds,
      workerId: Isolate.current.debugName ?? 'unknown',
    );
  }

  Future<ComputeResponse> _compute(ComputeRequest request, {RpcContext? context}) async {
    // Mathematical computations
    final result = await _performMathematicalComputation(
      request.operation,
      request.parameters,
    );

    return ComputeResponse(
      result: result,
      metadata: {
        'computation_type': request.operation,
        'parameter_count': request.parameters.length,
        'worker_id': Isolate.current.debugName,
      },
    );
  }

  Stream<BatchResult> _processBatch(BatchRequest request, {RpcContext? context}) async* {
    final batchSize = request.batchSize ?? 10;

    for (int i = 0; i < request.items.length; i += batchSize) {
      final batch = request.items.skip(i).take(batchSize).toList();
      final processed = await _processBatchItems(batch);

      yield BatchResult(
        batchIndex: i ~/ batchSize,
        results: processed,
        progress: (i + batch.length) / request.items.length,
      );
    }
  }

  Future<ProcessedItem> _performHeavyComputation(DataItem item) async {
    // Simulate CPU-intensive work
    await Future.delayed(Duration(milliseconds: 50));

    return ProcessedItem(
      id: item.id,
      result: item.value * 2, // Simplified computation
      metadata: {
        'processed_by': Isolate.current.debugName,
        'computation_time': 50,
      },
    );
  }
}

main_application.dart

// main_application.dart

class MainApplication {
  late RpcCallerEndpoint _caller;
  late DataProcessorCaller _dataProcessor;
  late RpcIsolateTransport _transport;

  Future<void> initialize() async {
    // Create isolate transport with worker pool
    _transport = RpcIsolateTransport.workerPool(
      workerCount: Platform.numberOfProcessors,
      workerScript: 'worker_isolate.dart',
      options: IsolateTransportOptions(
        enableZeroCopy: true,
        loadBalancing: LoadBalancingStrategy.roundRobin,
        maxMemoryUsage: 256 * 1024 * 1024, // 256MB per worker
        idleTimeout: Duration(minutes: 10),

        // Worker lifecycle management
        onWorkerCreated: (workerId) => print('Worker created: $workerId'),
        onWorkerTerminated: (workerId) => print('Worker terminated: $workerId'),
        onWorkerError: (workerId, error) => print('Worker error: $workerId - $error'),
      ),
    );

    _caller = RpcCallerEndpoint(transport: _transport);
    _dataProcessor = DataProcessorCaller(_caller);

    await _transport.initialize();
    print('Initialized ${_transport.workerCount} worker isolates');
  }

  Future<void> processLargeDataset() async {
    final dataset = generateLargeDataset(10000); // 10k items

    print('Processing ${dataset.items.length} items...');
    final stopwatch = Stopwatch()..start();

    // Process in parallel across workers
    final response = await _dataProcessor.processData(ProcessDataRequest(
      items: dataset.items,
      startTime: DateTime.now(),
    ));

    stopwatch.stop();

    print('Processed ${response.results.length} items in ${stopwatch.elapsedMilliseconds}ms');
    print('Worker: ${response.workerId}');
    print('Processing time: ${response.processingTimeMs}ms');
  }

  Future<void> close() async {
    await _caller.close();
    await _transport.close();
  }
}

void main() async {
  final app = MainApplication();

  try {
    await app.initialize();
    await app.processLargeDataset();
  } finally {
    await app.close();
  }
}

contracts.dart

// contracts.dart

// Data structures for zero-copy passing
class DataItem {
  final String id;
  final double value;
  final Map<String, dynamic> metadata;

  DataItem({
    required this.id,
    required this.value,
    required this.metadata,
  });
}

class ProcessedItem {
  final String id;
  final double result;
  final Map<String, dynamic> metadata;

  ProcessedItem({
    required this.id,
    required this.result,
    required this.metadata,
  });
}

class ProcessDataRequest {
  final List<DataItem> items;
  final DateTime startTime;

  ProcessDataRequest({
    required this.items,
    required this.startTime,
  });
}

class ProcessDataResponse {
  final List<ProcessedItem> results;
  final int processingTimeMs;
  final String workerId;

  ProcessDataResponse({
    required this.results,
    required this.processingTimeMs,
    required this.workerId,
  });
}

class ComputeRequest {
  final String operation;
  final List<double> parameters;

  ComputeRequest({
    required this.operation,
    required this.parameters,
  });
}

class ComputeResponse {
  final double result;
  final Map<String, dynamic> metadata;

  ComputeResponse({
    required this.result,
    required this.metadata,
  });
}

class BatchRequest {
  final List<DataItem> items;
  final int? batchSize;

  BatchRequest({
    required this.items,
    this.batchSize,
  });
}

class BatchResult {
  final int batchIndex;
  final List<ProcessedItem> results;
  final double progress;

  BatchResult({
    required this.batchIndex,
    required this.results,
    required this.progress,
  });
}

Use Cases

1. Image Processing Pipeline

Process images in parallel without blocking the UI:

class ImageProcessingPipeline {
  late RpcCallerEndpoint _caller;
  late ImageProcessorCaller _imageProcessor;

  Future<void> initializeWorkers() async {
final transport = RpcIsolateTransport.workerPool(
  workerCount: 4, // 4 worker isolates for image processing
  workerScript: 'image_worker.dart',
  options: IsolateTransportOptions(
    enableZeroCopy: true,
    maxMemoryUsage: 1024 * 1024 * 1024, // 1GB per worker for images
  ),
);

_caller = RpcCallerEndpoint(transport: transport);
_imageProcessor = ImageProcessorCaller(_caller);
  }

  Future<List<ProcessedImage>> processImageBatch(List<RawImage> images) async {
print('Processing ${images.length} images in parallel...');

// Process all images concurrently across workers
final futures = images.map((image) async {
  return await _imageProcessor.processImage(ProcessImageRequest(
    image: image,
    filters: [
      ImageFilter.resize(width: 800, height: 600),
      ImageFilter.sharpen(intensity: 0.5),
      ImageFilter.colorCorrection(brightness: 1.1),
    ],
    outputFormat: ImageFormat.jpeg,
    quality: 85,
  ));
}).toList();

final results = await Future.wait(futures);
print('Processed ${results.length} images');

return results.map((r) => r.processedImage).toList();
  }

  Stream<BatchProcessingUpdate> processImageDirectory(String directoryPath) async* {
final imageFiles = Directory(directoryPath).listSync()
    .where((f) => f.path.endsWith('.jpg') || f.path.endsWith('.png'))
    .toList();

const batchSize = 10;
int processed = 0;

for (int i = 0; i < imageFiles.length; i += batchSize) {
  final batch = imageFiles.skip(i).take(batchSize).toList();
  final images = await Future.wait(
    batch.map((file) => loadImageFromFile(file.path)),
  );

  final processedImages = await processImageBatch(images);
  processed += processedImages.length;

  yield BatchProcessingUpdate(
    processedCount: processed,
    totalCount: imageFiles.length,
    progress: processed / imageFiles.length,
    currentBatch: processedImages,
  );
}
  }
}

2. Data Analytics and Computation

Perform heavy computational work in background isolates:

class DataAnalytics {
  late RpcCallerEndpoint _caller;
  late AnalyticsProcessorCaller _analyticsProcessor;

  Future<void> initializeAnalyticsCluster() async {
final transport = RpcIsolateTransport.workerPool(
  workerCount: Platform.numberOfProcessors,
  workerScript: 'analytics_worker.dart',
  options: IsolateTransportOptions(
    enableZeroCopy: true,
    loadBalancing: LoadBalancingStrategy.leastLoaded,

    // Analytics-specific settings
    memoryManagement: MemoryManagement(
      maxMemoryUsage: 2 * 1024 * 1024 * 1024, // 2GB per worker
      gcTriggerThreshold: 0.8,
      enableMemoryProfiling: true,
    ),

    performanceMonitoring: PerformanceMonitoring(
      enableCpuProfiling: true,
      enableLatencyTracking: true,
      reportInterval: Duration(seconds: 30),
    ),
  ),
);

_caller = RpcCallerEndpoint(transport: transport);
_analyticsProcessor = AnalyticsProcessorCaller(_caller);
  }

  Future<AnalyticsReport> generateReport(AnalyticsDataset dataset) async {
print('Generating analytics report for ${dataset.records.length} records...');

// Distribute different types of analysis across workers
final futures = [
  _analyticsProcessor.calculateStatistics(StatisticsRequest(
    data: dataset.numericalData,
    operations: [
      StatisticalOperation.mean,
      StatisticalOperation.median,
      StatisticalOperation.standardDeviation,
      StatisticalOperation.percentiles,
    ],
  )),

  _analyticsProcessor.performTimeSeriesAnalysis(TimeSeriesRequest(
    timeSeries: dataset.timeSeriesData,
    analysisTypes: [
      TimeSeriesAnalysis.trend,
      TimeSeriesAnalysis.seasonality,
      TimeSeriesAnalysis.correlation,
    ],
  )),

  _analyticsProcessor.runMachineLearning(MLRequest(
    features: dataset.features,
    labels: dataset.labels,
    algorithms: [
      MLAlgorithm.linearRegression,
      MLAlgorithm.randomForest,
      MLAlgorithm.clustering,
    ],
  )),
];

final results = await Future.wait(futures);

return AnalyticsReport(
  statistics: results[0] as StatisticsResult,
  timeSeriesAnalysis: results[1] as TimeSeriesResult,
  machineLearningResults: results[2] as MLResult,
  generatedAt: DateTime.now(),
  processingMetrics: await _getProcessingMetrics(),
);
  }

  Stream<RealtimeAnalytics> startRealtimeAnalysis(Stream<DataPoint> dataStream) async* {
final controller = StreamController<AnalyzeDataPointRequest>();

// Send real-time data to analytics workers
dataStream.listen((dataPoint) {
  controller.add(AnalyzeDataPointRequest(
    dataPoint: dataPoint,
    analysisConfig: RealtimeAnalysisConfig(
      enableAnomalyDetection: true,
      enableTrendAnalysis: true,
      windowSize: Duration(minutes: 5),
    ),
  ));
});

// Get real-time results
await for (final result in _analyticsProcessor.analyzeRealtimeStream(controller.stream)) {
  yield RealtimeAnalytics(
    analysis: result,
    timestamp: DateTime.now(),
    workerId: result.workerId,
  );
}
  }
}

3. Scientific Computing

High-performance scientific computations:

class ScientificComputing {
  late RpcCallerEndpoint _caller;
  late ComputationEngineCaller _computationEngine;

  Future<void> initializeComputeCluster() async {
final transport = RpcIsolateTransport.workerPool(
  workerCount: Platform.numberOfProcessors * 2, // Over-provision for CPU-bound work
  workerScript: 'scientific_worker.dart',
  options: IsolateTransportOptions(
    enableZeroCopy: true,

    // Optimize for scientific computing
    computeOptimization: ComputeOptimization(
      enableVectorization: true,
      enableParallelMath: true,
      floatingPointPrecision: FloatingPointPrecision.double,
    ),

    // Memory management for large datasets
    memoryManagement: MemoryManagement(
      maxMemoryUsage: 4 * 1024 * 1024 * 1024, // 4GB per worker
      enableLargeObjectHeap: true,
      gcStrategy: GCStrategy.throughput,
    ),
  ),
);

_caller = RpcCallerEndpoint(transport: transport);
_computationEngine = ComputationEngineCaller(_caller);
  }

  Future<SimulationResult> runMolecularDynamicsSimulation(MDSimulationRequest request) async {
print('Starting molecular dynamics simulation with ${request.particles.length} particles...');

// Distribute simulation steps across workers
final timeSteps = request.totalTime ~/ request.timeStep;
final results = <MDStepResult>[];

for (int step = 0; step < timeSteps; step += 100) {
  final stepBatch = math.min(100, timeSteps - step);

  final batchFutures = List.generate(stepBatch, (i) async {
    return await _computationEngine.simulateTimeStep(MDStepRequest(
      particles: step == 0 ? request.particles : results.last.finalState,
      stepNumber: step + i,
      timeStep: request.timeStep,
      forces: request.forces,
      boundary: request.boundaryConditions,
    ));
  });

  final batchResults = await Future.wait(batchFutures);
  results.addAll(batchResults);

  // Report progress
  final progress = (step + stepBatch) / timeSteps;
  print('Simulation progress: ${(progress * 100).toStringAsFixed(1)}%');
}

return SimulationResult(
  steps: results,
  totalEnergy: results.last.totalEnergy,
  finalState: results.last.finalState,
  computationTime: results.fold(Duration.zero, (sum, r) => sum + r.computationTime),
);
  }

  Future<MatrixOperationResult> performLargeMatrixOperations(List<Matrix> matrices) async {
// Distribute matrix operations across workers
final operations = [
  MatrixOperation.multiply,
  MatrixOperation.invert,
  MatrixOperation.eigenvalues,
  MatrixOperation.singularValueDecomposition,
];

final futures = <Future>[];

for (final matrix in matrices) {
  for (final operation in operations) {
    futures.add(_computationEngine.performMatrixOperation(MatrixRequest(
      matrix: matrix,
      operation: operation,
      precision: NumericalPrecision.high,
    )));
  }
}

final results = await Future.wait(futures);

return MatrixOperationResult(
  results: results.cast<MatrixResult>(),
  totalComputationTime: results.fold(
    Duration.zero, 
    (sum, r) => sum + (r as MatrixResult).computationTime,
  ),
);
  }
}

Performance Optimization

Memory Management

Optimize memory usage for large-scale processing:

class OptimizedIsolateTransport {
  static RpcIsolateTransport createOptimized({
required int workerCount,
required String workerScript,
  }) {
return RpcIsolateTransport.workerPool(
  workerCount: workerCount,
  workerScript: workerScript,
  options: IsolateTransportOptions(
    enableZeroCopy: true,

    // Memory optimization
    memoryManagement: MemoryManagement(
      maxMemoryUsage: _calculateOptimalMemoryPerWorker(),
      gcTriggerThreshold: 0.7,
      enableMemoryProfiling: true,
      enableLargeObjectHeap: true,
      gcStrategy: GCStrategy.lowLatency,
    ),

    // Performance monitoring
    performanceMonitoring: PerformanceMonitoring(
      enableCpuProfiling: true,
      enableMemoryTracking: true,
      enableLatencyTracking: true,
      reportInterval: Duration(seconds: 30),
      onPerformanceReport: _handlePerformanceReport,
    ),

    // Load balancing
    loadBalancing: LoadBalancingStrategy.adaptive,
    healthCheckInterval: Duration(seconds: 10),

    // Worker lifecycle
    workerLifecycle: WorkerLifecycle(
      idleTimeout: Duration(minutes: 5),
      maxWorkersPerCore: 2,
      enableWorkerRecycling: true,
      recycleAfterOperations: 10000,
    ),
  ),
);
  }

  static int _calculateOptimalMemoryPerWorker() {
final totalMemory = Platform.operatingSystemVersion.contains('memory') 
    ? _parseMemoryFromOS() 
    : 8 * 1024 * 1024 * 1024; // Default 8GB

final workerCount = Platform.numberOfProcessors;
return (totalMemory * 0.7) ~/ workerCount; // Use 70% of available memory
  }

  static void _handlePerformanceReport(PerformanceReport report) {
print('Performance Report:');
print('  CPU Usage: ${report.cpuUsage.toStringAsFixed(1)}%');
print('  Memory Usage: ${report.memoryUsage ~/ (1024 * 1024)}MB');
print('  Average Latency: ${report.averageLatency.inMilliseconds}ms');
print('  Throughput: ${report.operationsPerSecond.toStringAsFixed(0)} ops/sec');

// Trigger optimizations based on metrics
if (report.memoryUsage > report.maxMemoryUsage * 0.9) {
  print('Warning: High memory usage, triggering GC');
  // Trigger garbage collection
}

if (report.averageLatency > Duration(seconds: 1)) {
  print('Warning: High latency detected');
  // Consider adding more workers or optimizing algorithms
}
  }
}

Load Balancing Strategies

Implement intelligent work distribution:

class SmartLoadBalancer {
  final Map<String, WorkerMetrics> _workerMetrics = {};
  final Queue<PendingWork> _workQueue = Queue();

  String selectOptimalWorker(WorkType workType) {
switch (workType) {
  case WorkType.cpuIntensive:
    return _selectByCpuUsage();
  case WorkType.memoryIntensive:
    return _selectByMemoryUsage();
  case WorkType.balanced:
    return _selectByOverallLoad();
  default:
    return _selectRoundRobin();
}
  }

  String _selectByCpuUsage() {
return _workerMetrics.entries
    .where((entry) => entry.value.isHealthy)
    .reduce((a, b) => a.value.cpuUsage < b.value.cpuUsage ? a : b)
    .key;
  }

  String _selectByMemoryUsage() {
return _workerMetrics.entries
    .where((entry) => entry.value.isHealthy)
    .reduce((a, b) => a.value.memoryUsage < b.value.memoryUsage ? a : b)
    .key;
  }

  String _selectByOverallLoad() {
return _workerMetrics.entries
    .where((entry) => entry.value.isHealthy)
    .reduce((a, b) => a.value.overallLoad < b.value.overallLoad ? a : b)
    .key;
  }

  void updateWorkerMetrics(String workerId, WorkerMetrics metrics) {
_workerMetrics[workerId] = metrics;
  }

  Future<void> rebalanceWorkload() async {
final overloadedWorkers = _workerMetrics.entries
    .where((entry) => entry.value.overallLoad > 0.8)
    .map((entry) => entry.key)
    .toList();

if (overloadedWorkers.isNotEmpty) {
  await _redistributeWork(overloadedWorkers);
}
  }
}

Best Practices

1. Optimize for Zero-Copy Operations

class ZeroCopyOptimizations {
  // ✅ Good: Pass large objects directly
  Future<ProcessedData> processLargeData(LargeDataset dataset) async {
// Object is passed by reference, no copying
return await processor.process(dataset);
  }

  // ❌ Avoid: Unnecessary data transformation before passing
  Future<ProcessedData> processLargeDataBad(LargeDataset dataset) async {
// This creates unnecessary copies
final serialized = dataset.toJson();
final reconstructed = LargeDataset.fromJson(serialized);
return await processor.process(reconstructed);
  }

  // ✅ Good: Use streaming for large collections
  Stream<ProcessedItem> processStreamingData(Stream<DataItem> items) async* {
await for (final item in items) {
  yield await processor.processItem(item);
}
  }
}

2. Handle Worker Lifecycle Properly

class WorkerLifecycleManager {
  final Map<String, WorkerInfo> _workers = {};

  Future<void> initializeWorkers() async {
for (int i = 0; i < Platform.numberOfProcessors; i++) {
  await _createWorker('worker_$i');
}
  }

  Future<void> _createWorker(String workerId) async {
try {
  final worker = await IsolateWorker.spawn(
    'worker_script.dart',
    onExit: () => _handleWorkerExit(workerId),
    onError: (error) => _handleWorkerError(workerId, error),
  );

  _workers[workerId] = WorkerInfo(
    worker: worker,
    createdAt: DateTime.now(),
    taskCount: 0,
  );

} catch (e) {
  print('Failed to create worker $workerId: $e');
  rethrow;
}
  }

  void _handleWorkerExit(String workerId) {
print('Worker $workerId exited, creating replacement...');
_workers.remove(workerId);
_createWorker(workerId);
  }

  void _handleWorkerError(String workerId, dynamic error) {
print('Worker $workerId error: $error');
// Implement error recovery strategy
  }

  Future<void> gracefulShutdown() async {
print('Shutting down ${_workers.length} workers...');

await Future.wait(_workers.values.map((info) async {
  await info.worker.terminate(graceful: true);
}));

_workers.clear();
  }
}

3. Monitor and Profile Performance

class IsolatePerformanceProfiler {
  final Map<String, List<Duration>> _latencyHistory = {};
  final Map<String, int> _throughputCounters = {};
  Timer? _reportTimer;

  void startProfiling() {
_reportTimer = Timer.periodic(Duration(seconds: 30), (_) {
  _generatePerformanceReport();
});
  }

  void recordLatency(String operation, Duration latency) {
_latencyHistory.putIfAbsent(operation, () => <Duration>[]);
_latencyHistory[operation]!.add(latency);

// Keep only recent measurements
if (_latencyHistory[operation]!.length > 1000) {
  _latencyHistory[operation]!.removeAt(0);
}
  }

  void recordThroughput(String operation) {
_throughputCounters[operation] = (_throughputCounters[operation] ?? 0) + 1;
  }

  void _generatePerformanceReport() {
print('\n=== Isolate Performance Report ===');

for (final operation in _latencyHistory.keys) {
  final latencies = _latencyHistory[operation]!;
  final avgLatency = latencies.fold(Duration.zero, (sum, l) => sum + l) ~/ latencies.length;
  final throughput = _throughputCounters[operation] ?? 0;

  print('$operation:');
  print('  Average Latency: ${avgLatency.inMilliseconds}ms');
  print('  Throughput: ${throughput / 30} ops/sec');
  print('  Total Operations: $throughput');
}

// Reset counters
_throughputCounters.clear();
  }

  void stopProfiling() {
_reportTimer?.cancel();
_generatePerformanceReport();
  }
}

Isolate transport is the perfect choice for CPU-intensive applications that need to maintain UI responsiveness while performing heavy computational work. Its zero-copy capabilities and worker management make it ideal for scientific computing, data processing, and any scenario where parallel processing can significantly improve performance.